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FOREWORD

The Operations Research Center at the Massachusetts Institute of
Technology is an interdepartmental activity devoted to graduate education
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is supported, in part, by government contracts and grants. The work re-~
ported herein was supported by the Office of Naval Research under Contract
No. N00014~75-C-0556.

Richard C. Larson
Jeremy F. Shapiro

Co-Directors

ABSTRACT

A

This paper presents a hierarchical approach to plan and schedule
production in a manufacturing environment that can be modelled as a
single stage process. Initially, the basic trade-offs inherent to
production planning decisions are represented by means of an aggregate
model, which is solved on a rolling horizon basis. Subsequently, the
first solution of the aggregate plan is disaggregated, considering
additional cost objectives and detailed demand constraints.

Several improvements in the methodology related to hierarchical
production planning are suggested. Special attention is given to
alternative disaggregation procedures, problems of infeasibilities, and
the treatment of high setup costs. Computational results, based on real

life data, are presented and discussed.




1. INTRODUCTION

In this paper we will concentrate exclusively on the design of model-
based systems to support tactical and operational decisions pertinent to
production planning. Tactical decisions are concerned with the allocation
of the resources available for production purposes. Typical decisions are
the amounts of each product type to be produced in each period, the levels
of regular and overtime workforce to be used, specification of service
levels, inventory targets, machines capacities, etc. An appropriate
planning horizon for these decisions is a full seasonal cycle to capture
the fluctuations in demand due to seasonalities and promotions. The
length of the cycle is usually one year. To make effective tactical deci-
sions it is generally sufficient to consider aggregate data. The basic
operational decisions of production planning consist in establishing the
amount of each item that must be produced in each period and the correspond-
ing resources needed. Operational decisions are made subject to the limita-
tions imposed by the tactical level and require a high degree of detailed
information.

In many practical situations of batch processing systems, tactical and
operational decisions are taken by distinct managerial echelons. This
fact must be recognized by system designers if an implementation is to
succeed. Although production planning has attracted the attention of
operation researchers for a long time, the different nature of the two
classes of decisions mentioned above has been seldomly considered. Some
exceptions include the works of Holt, Modigliani, Muth and Simon [16],
Winters {27], Hax and Meal [15), Bitran and Hax [2], Shwimer [23), Newson
[21], and Zoller [28]. However, most publications encountered in the
literature either formulate the production planning problem at u detailed

level, (71,(8],(19]1,[20]), or advocate an aggregate approach and give little

js.. _,
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insight into how to disaggregate the solutions, see [4]},[5],(11],[18], and
[25]. The detailed formulation of the problem leads to a very large mathe-
matical programming problem which is very difficult to interact with, requires
demand data that can seldomly be forecasted with an acceptable accuracy, and
is expensive to operate.

In this paper we present an improved version of the hierarchical proce-
dure for production planning suggested by Bitran and Hax [2] and provide
theoretical results supporting the method. To make this paper as self

sufficient as possible we briefly describe the hierarchical production

planning concept.

1.1 Hierarchical Production Planning

Hax and Meal introduced the concept of hierarchical production planning
in [15]. The method consists primarily of recognizing the differences

between tactical and operational decisions. The tactical decisions are

associated with aggregate production planning while the operational deci-

sions are an outcome of the disaggregation process.
Hax and Meal proposed the following levels of aggregation:

Items: are the end products delivered to customers.

Product Types: are groups of items having similar unit costs, direct costs
(excluding labor), holding costs per unit per period, productivities
(number of units that can be produced per unit of time), and season-
alities.

Families: are groups of items pertaining to a same product type and sharing
similar setups. That is, whenever a machine is prepared to produce
an item of a family, all other items in the same family can
also be produced with a minor change in setups.

Although we have adopted this three-level product structure in our




-3-

work, the reader should realize that a specific disaggregation hierarchy
depends on the actual setting being considered.

An overview of hierarchical production planning is shown in Figure 1.1.
It applies to single stage batch production processes. An extension for
multistage processes is given in [1]. As indicated in Figure 1.1, three
levels, paralleling the aggregation hierarchy, are recommended (boxes 1, 2,
and 3). The first is the product type level where aggregate plans for
product types are determined. The planning horizon is usually one year.
This level is concerned with tactical decisions. Only the amount of each
product type to be produced in the first period 1s passed to the family
level (box 2). Aggregate production plans are determined on a rolling
horizon basis. That is, the planning horizon is maintained equal to one
year by deleting the last period and adding a new one. At the second level
the run quantity of each type is disaggregated to obtain the production
quantities of each family. These are passed to the item level (box 3) where
they are further disaggregated to determine the amount of each item to be
Produced in the first period. It is important to notice that in the hier-
archical method detailed forecasts at the item level over the entire aggregate
Planning horizon are not needed. As a consequence, the data collection
required is considerably smaller than in detailed formulations of the
production planning problem. Moreover, the fact that there are usually a
few number of product types justifies the use of sophisticated forecasting
techniques that would be prohibitively expensive to employ for thousands
of items. Since aggregate forecast tends to be more accurate than detailed
forecast, production plans generated by hierarchical planning tend to be
quite stable in the rolling horizon process.

Hax and Meal proposed a heuristic to perform the three levels (boxes 1,

2, and 3) in Figure 1.1. Bitran and Hax formalized the hierarchical planning
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Read in last period's usage

\
Update Inventory Status
(Physical Inventory, Amount on
Order, Backorders, Lost Sales,
Available Inventory)

N

Update demand forecasts, safety
stocks, overstock limits, and
run out times

v

Determine effective demands
for each product type*

!

1

Aggregate Plan for Types 7]
(Aggregate Planning Reports)
v ,
[#3)
Family Disaggregation Management
-—)[ (Family Planping Reports) Interaction
(3)

Item Disaggregation
(Item Planning Reports)

h 4

Detailed Status Reports

Figure 1.1: Conceptual Overview of Hierarchical Planning System

*
For a discussion of effective demands, see Section 2.2.
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heuristic by suggesting the use of convex knapsack problems to disaggregate
the product type and families run quantities into families and item run
quantities, respectively.

The plan of the paper is as follows. In section 2 the algorithm
suggested by Bitran and Hax is briefly reviewed. In section 3 theoretical
results supporting the hierarchical production planning method are provided.
Three modifications to the algorithm in [2] are introduced in section 4.
Results of extensive computational experiments comparing several hierarchi-
cal procedures are given in section 5. Conclusions are presented in

section 6. Proofs of the theorems are presented in the appendices.
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2. HIERARCHICAL PRODUCTION PLANNING - THE REGULAR KNAPSACK METHOD

The first formal system that represents our philosophy for hierarchical
production planning was proposed by Hax and Meal [15]. A formalization of
that approach was developed by Bitran and Hax [2]., In this section we will
summarize the basic features of the Bitran and Hax approach, which will be
referred to as the Regular Knapsack Method (RKM). The origin of this name
is due to the fact that the family and item disaggregation subsystems are

both represented by means of Knapsack problems.

2.1 Aggregate Production Planning for Product Types

Aggregate production planning, the highest level of planning in hier-
archical production planning systems, addresses product type scheduling.
The following linear program provides a simple representation of that

planning problem.

Problem (P)

I T T
minimize ¢ % (c. X, +h. . I,)+ ¥ (rR +0.0)
=1 t=1 itTit it it =1 tt t't
subject to Iit-l + Xit -~ Iit = dit 1=1,2,...,1; t=1,2,...,T.
1
< + = “on .
I mX, S R +O t=1,2,...,T
i=1
Rt < (rm)t t=1,2,...,T.
0, 2 (om), t=1,2,...,T.
X o1 RO 2 0 i=1,2,...,I; t=1,2,...,T.

The decision variables of the mocel are: xit’ the number of units to

be produced of type { during period t; I £’ the number of units of inventory
’

i
of type i left over at the end of period t; and Rt and Ot, the regular hours




Ty

c——

and the overtime hours used during period t, respectively.
The parameters of the model are: T, the length of the planning horizon;

c, , the unit production cost (excluding labor); h the inventory carrying

it

cost per unit per period; rt and ot, the cost per manhour of regular labor

it’

and of overtime labor; (rm)t and (om)t, the total availability of regular
and overtime hours in period t, respectively; mi, the hours required to

produce one unit of product type i; and d , the effective demand for

i,t
type i during period t. (A definition of effective demand is given below.)
For simplicity of presentation, we have not incorporated in Problem (P)
hiring and firing, production lead time, backorders and other features

that can be easily considered. Moreover, the aggregate Problem (P) need

not necessarily be formulated as a linear programming problem. Any
aggregate production planning model may be used as long as it adequately
represents the practical setting under consideration. Discussions of
aggregate models can be found in [12],[6],[22], and [17]. Problem (P)

is solved with a rolling horizon of length T. At the end of every time
period, new information becomes available and is used to update the values
of the parameters of the model, particular demand forecasts, and the result-
ing values of the decision variables. Due to the uncertainties present

in the planning process, only first period results of the aggregate problem

are actually implemented.

2.2 Effective Demand

As is shown in Bitran and Hax [2], the use of demand, instead of
effective demand, may lead to an aggregate solution of Problem (P) which
cannot be disaggregated. The effective demand represents net requirements
which cannot be satisfied from initial available inventory. More precisely,

let Iko represent the initial inventory of item k, and akt denote the demand
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of item k in period t. The effective demands of {item k are defined as:

t
s

= i
max (0, d - Iko) if d

KT =0 (define d

=0) and

kt~1 ko

! 1=1
dhee T |-
(t=1,2,..,T) dkt otherwise.

Thece computations force one to provide detailed forecasts for each item
until the initial inventory 1s exhausted. The effective demand of product
type 1 is defined as the sum of the effective demands of all of its items,
i.e.:

= v d

d L
it keK (1)

kt

where K(i) is the set of all items belonging to product type i.
Notice that since, in Problem (P), dit represents effective demand it
follows that the initial inventory of every product type i, Iio is eaual to

zero.

2.3 A Family Disaggregation Model

Since only the first period's results of the aggregate production problems
are to be implemented, the family disaggregation model attempts to allocate
the production quantities Xil of each product type to the families belonging
to that type. The disaggregation is performed using, for each product type i,
the following continuous knapsack problem which determines run quantities

for each family attempting to minimize the total setup cost among families.

Problem (Pi)

s.d,
Minimize z 1?—1-
jed(i) i1
subject to I Y = X
Jed (1) 31 11
By S Y, < ouby JeJ(4)
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where s. and d, denote the setup cost and annual demand of family j. The

N

variables Y.1 represent the quantity to be produced of each family j during
J

period 1. The upper bound ubjl and lower bound lb11 are computed as follows:

ubjl = max(0, osjl - aijl) and
= d.. - ai,, +
lbjl max (0, djl alj1 ssjl)
where osjl, djl’ aijl’ and ssjl dennte respectively the overstock limit,

the demand, the available inventory, and the safety stcck of family j in
period 1. J(i) is the set of families in product type i that trigger in

period 1, i.e., it is the set of indices j such that ajl - aijl + ssjl > 0.

The objective function of Problem (Pi) assumes that the family run
quantities are proportional to the setup cost and the annual demand for a
given family. This assumption, which is the basis of the economic order
quantity formulation, tends to minimize the average annual setup cost. In
section 4.1 this objective function will be reviewed. An efficient algorithm

to solve Problem (Pi) is given in Bitran and Hax [2].

2.4 The Item Disaggregation Model

Once the quantities le have been determined, one needs to disaggre-
gate them among the items belonging to each family j. For the current
planning period, all costs have already been determined by the two previous
stages in the hierarchical process. However, the feasible solution chosen
will establish the intial conditions of the next period and will affect
future costs. In order to save setups in future periods, it seems reason-
atle to distribute the family run quantity among its items in such a way

that each item's runout time coincides with the runout time of the family.

This can be accomplished by the following continuous knapsack problem.

-
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Probl
roblem (Qj) Y ¥ by (aikl-sskl) 7 +ai . - 2
viotntse 1 kel(é;[) ) G tah,y -ssyy
kekK(3) kekK(§) kl dkl

subject to z Z = Y
kek(4) k1l j1
zbkl S Ubkl kekK(3)

The variables Zkl denote the production quantity of item k in family jJ.

K(j) is the set of items in family j and the parametes dkl' aikl’ 88, 1>
ﬁLkJ, aud ubkl represent for item k the same quantities that were discussed

for family j in Problem (Pi). An efficient algorithm to solve Problem (Qj)

e Ty

is presented in [2].

A ~ o — -
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3. COMPARING DISAGGREGATION PROCEDURES

An important determinant for the performance of hierarchical production
planning systems is the procedure used to disaggregate earlier decisions at
each hierarchical level. The knapsack approach just presented identifies one
possible alternative for hierarchical designs. The knapsack nature of the
subproblems is very appealing because of its great computational advantage.
However, it is imperitive that we gain some theoretical understanding of
the impact of different disaggregation schemes on the production plannine
costs. Such an understanding will help us in evaluating and comparing
alternative disaggregation mechanisms, and in judging the improvements to
be obtained by introducing modifications to the RKM.

This section will describe two fundamental theorems which provide
important insights into the strengths of various disaggregation methodolo-
gles. Let the superscript u denote a generic disaggregation procedure
applied to Problem (P). The effective demands can be expressed as a func:iion
of the real demands (or forecasted demands) and the disaggregation procedure

used as follows:

= u .
dit = dit - for i=1,2,...,I and ¢=1,2,...,T.

The quantity g:t represents the total contribution of all items belonging

to product type i to determine the effective demand of that product type

in period t, using the disaggregation procedure u. Different disaggregation
procedures will affect the initial inventory of each item and, thus, the

T
effective demand of the product types. Therefore, I g:t, T=1,...,T indicate

t=1
the sum of the real or forecasted demands of the items in product type i that
can be satisfied directly by the initial inventory up to period T.

Problem (P) can be rewritten as a function of disaggregation u as

follows:

[

[

— - ———
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L JM0 -
Problem (Pu)
u I T u u T u u
z = min I I (c. X h, I.) ¥ (r R.+0,0]) +
¢ tt tt
=1 g=1 161t e it t=1
I T-1 T u
+ I ¥ h I g
121 £=1 IF g=p41 K
u u u _ u
j - = = =1,2 ., t=1,2,...,T.
subject to Iit—l + xit Iit dit bye i=1,2, .
I u
: omxt < RU+0 t=1,2,...,T.
o 1it =
u -
RY < (rm), t=1,2,...,T.
Oz < (om)t t=1,2,...,T.
SO U S S i=1,2,...,I; t=1,2,...,T.

it’Iit’ t’ ¢

where the last term in the objective function represents the holding coet
of the initial inventory of all product types, which is a function of the
disaggregation procedure used. This term has been omitted in Problem (P)
since, given a disaggregation procedure, the initial inventory cost is
constant. However, it is important to include it in Problem (Pu) because
our purpose is to compare the performance of various disaggregation proce-

dures.

The quantities g:t satisfy the following condition
i=1,2,...,I

where Iio is the initial inventory of product type 1.
A disaggregation procedure u is said to be feasible if Problem Y

is feasible.

v
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Theorem 3.1: Let u1 and u, be two generic feasible disaggregation proce-

dures such that

t uy t u,
T 8 2 b Bix i=1,2,...,I; t=1,2...,T. (3.1)
k=1 k=1
u uZ

The proof of this theorem is provided in Appendix 1, and its implica-
tions are discussed below.
o _ o _ - .
Define u=0 to be the case where 841 Iio and git =0, 1=1,2,...,1;
t=2,...,T. This imrlies the allocation of all initial inventory to the

first period of the planning horizon, even if the demands during that period

T u,
o - = ] =
become negative. Moreover, since 841 Iio kzl gik for i=1,2,...,I and
for every feasible disaggregation uj, it follows that
t ° t uj
I g > I g
=1 ik k=1 ik

for every t=1,2,...,t; 1=1,2,...,I and every uj. Hence, if we let z° be
the optimal value of problem (P°) corresponding to u=0 the corollary below

is directly implied by theorem 3.1.

u
Corollary 3.1: Assume (P°) is feasible. Then, 2° Lz 3 for every feasible

disaggregation uj'

Theorem 3.1 provides a mechanism for comparing two disaggregation
procedures vy and u,. If conditions 3.1 are met, u is preferred to u,.
In this sense, conditions 3.1 can be viewed as establishing a partial order
structure in the space of feasible disaggregations.

The key question to ask at this point i1s whether a feasible disaggre-

gation procedure exists which is optimal, i.e., that attains the lower

bound zo. The answer to the question is provided by Theorem 3.2 below which
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establishes the conditions under which the disaggregation procedure knowm
as "Equalization of Run Out Times" (EROT) becomes optimal.

EROT allocates the production amount determined at the aggregate
planning level for a given product'ty'pe, xil, in such a way as to equal-
ize the run out times of all the items belonging to that type. The run
out time for 2 product type is defined as the number of periods (possibly
a fractional number) that will elapse until the inventory of that item

reaches the safety stock level.

Theorem 3.2: Let Up denote the EROT disaggregation procedure. Then, {f
all disaggregations are made with the EROT disaggregation method, if

Iio 2 0 for all product types, and if the aggregate product type problem
(Po) is feasible it follows that

z = 2

The proof to this theorem is provided in Appendix 2.

Recogniziag that the aggregate plan ignores setup costs, there are
two important conclusions that are derived from Theorems 3.1 and 3.2.

First, a qualitative interpretation of Theorem 3.1 is that the
larger the git's are for emall values of t, the better it is in terms
of total primary costs. That is, the best disaggregation scheme must
allocate the initial inventory of es&ch product type uniformly, in
terms of runout time, among all its items. This interpretation makes
clear that the EROT disaggregation is optimal, as proved in Theorem 3.2.
However, when setup costs grow in importance it is desirable to allocate
larger inventories to the items that have the highest setup costs. The
motivation for a non-uniform allocation of inventories among itams in a
product type is the desire to minimize total setup costs. Therefore, we

face a tradeoff between using the EROT disaggregation procedure and consge-
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quently minimizing total primary costs while incurring high setup costs,

and choosing a disaggregation that allocates the inventories in a manner

that considers setup cost levels reducing these costs while incurring higher
primary costs. Our computational experience, to be discussed in section 5,
has shown that when the total setup costs are 5% or less of the total produc-
tion costs, EROT performs quite efficiently. The RKM, enhanced by modifica-
tions to be introduced in the next section, is one of those methodologies
that are more effective than EROT when setup costs are significant.

Second, EROT is a "myopic" disaggregation rule. The aggregate planning
model covers a long planning horizon, usually a full year, to allow for an
efficient allocation of facilities, manpower, and inventory under fluctuating
demand conditions. However, once the aggregate plan has been established,
we need just to look for a few periods ahead (the length of which is repre-~
sented by the runout time) to determine an appropriate disaggregation.
Although EROT is an optimal disaggregation procedure only under the absence
of setup costs, the qualitative implications of this approach support the
essence of hierarchical planning, that advocates the use of long planning
horizons at the highest planning level, while drastically decreasing the

planning horizons at the lower planning levels.

—y - - 4
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4, MODIFICATIONS INTRODUCED IN THE REGULAR KNAPSACK METHOD

The concerns about the performance of disaggregation procedures under
high setup costs, and the myopic nature of disaggregation rules, led us to
incorporate modifications in the Regular Knapsack Method. Computational
results evaluating the performance of EROT,‘RKH, and the modified Knapsack
will be presented in section 5. This section will cover three important

changes made to RKM.

4,1 A Myopic Objective Formulation for the Family Subproblem

The objective function proposed originally in the RKM (see section 2.3)

was:
s.d

Minimize r i;dl

jeJ(d4) 31

The definition of dj’ covering demand over the entire planning horizon,
contradicts the myoéic nature of the disaggregation process referred to in
the previous section. As a consequence, the resulting solutions le of
Problem (Pi) will not be sensitive to the difference among the demand
patterns of the families belonging to a given product type in the immediate
future. Inspired by the results of Theorem 3.1 and 3.2, dj was redefined
as a demand for family j over the run out time of its corresponding product
type; that is to say, over the time interval that would exhaust the produc-

tion quantity X., of the product type i containing family j when that quan-

11
tity is disaggregated according to the EROT scheme.

4.2 The Look Ahead Feasibility Rule

Another important problem that led us into modifying the RKM was the
generation of infeasibilities that could be introduced in the aggregate

problem by the disaggregation procedure used. Golovin [10) detected this

- e w— s 4
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problem and illustrated its occurance by means of a numerical example.
Gabbay [9] suggested a set of constraints to be introduced in the family
subproblem that would provide necessary and sufficient conditions for the
existence of feasible disaggregations over the entire planning horizons.
His results, however, were restricted to the static case; that is, when
Problem (P) is solved only at the beginning of the first period and no
rolling horizon is used. Moreover, Gabbay's constraints destroy the s>ecial
knapsack structure of the family subproblems, thus eliminating the compu-
tational advantages of such a structure.

To overcome the potential presence of infeasibilities, we developed
a simple rule that looks ahead just one period, attempting to prevent the
next period's disaggregation from becoming infeasible. We designated this
rule as the "Look Ahead Feasibility Rule". The essence of the computations
needed to carry out this rule is presented in Figure 4.1.

A numerical example might facilitate an understanding of the applica-
tions of this rule.

Assume that the aggregate schedule for product type Pl, composed by

families F1 and F2, is:

Product type Pl: Initigl Inventory Production Demand Ending Inventory
Period 1 10 units 25 units 20 units 15 units
Period 2 15 units 5 units 20 units 0 units

Demand and inventory data for families F1 and F2 are as follows:

FL F2
Initial inventory in period 1 0 units 10 units
Demand in period 1 10 units 10 units
Demand in period 2 10 units 10 units

The inventory figures do not include safety stocks.
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For each product type

Are all families in the product type in the
-~ 1ist of families that will be produced in the

present period?

Juo

Let Q; = planned type production for the present
period plus the sum of the available inventories
minus the safety stocks of the families in the

list of those that will be produced in the present
period minus the sum of the demands, in the present
period, of the families that will be produced.

i 3

period.

Let QZ = 01 minus the sum of the demands in the
next period of the families that are in the 1list
of those that will be produced in the present

family equal to the minimum
between its upper bound and 02
minus the planning inventory
at the end of the next period
for the product type.

Set the lower bound for the new

+

Add another family im the

product type, to the list 4‘J

of those that will be
produced in the present
period.

Yes

N
7

Is Q2 greater than the
planned inventory of the
product type for the end
of the next period (as
given by the last solution

of the product type prohlem)?//
/

\

\
\\ No
r——y

’

Figure 4.1: The Look Ahead Feasibility Rule

|
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According to this data, only Fl will trigger in the first period.
Therefore, under RKM, only Fl will be produced and its production quantity
will be 25 units (for simplicity, we are assuming no upper bounds for both
families). In the second period, only F2 will trigger, since its initial
inventory will be zero units and its demand will be 10 units. However,
since the production scheduled for Pl is 5 units, a shortage of 5 units for
family 2 will results. If the Look Ahead routine in Figure 4.1 is applied,
the value of Q1 will be Q1 = 25-0-10 = 15 and Q2 = 15-10 = 5. The planned
inventory for the product type Pl at the end of period 2 will be zero units,
Hence, Q2 =5 > (0. Therefore, the "look ahead feasibility rule" adds to
the list of families to be produced in the present period (period 1), composed
just by Fl, the family F2 with a lower bound of 5 units for its production
quantity. This modification will eliminate the infeasibility created by
RKM. Tt is important to note that this adjustment routine does not preclude

the use of the efficient knapsack algorithm to solve the family subproblem (Pi).

4.3 Modification of the Regular Knapsack Method for the Case of High Setup Costs

We have already addressed the role of setup costs in hierarchical produc-
tion planning systems. The initial approaches introduced by Hax and Meal [15]
and Bitran and Hax [2] ignore the setup costs at the product type level, and
include them in the decision rules at the family level. The resulting
algorithms proved to be effective when setup costs did not exceed 10 percent of
the total production costs (for further discussion of this subject see [2],[14)]).
The 1issues that still deserve consideration are those cases in which
setup costs represented a percentage higher than 15 of the total production
cost, Figure 4.2 describes a subroutine that we introduced to the RKM for
those situations with fairly high setup costs. This routine can be easily

modified to allow for managerial inputs which reflect their judgment regard-
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I X
For each product type 1

solve the family subproblem
(Pi)

9

For e¢ach family j, compute the integer number of periods, N(j),
of demand that can be satisfied with the production quantity yjl
allocated to the family by subproblem (Pi).

J

For each family j, compute the "ideal production quantity", using
Silver-Meal lot sizing procedure {[24], and the associated integer
number of periods, M(j), of demand that can be satisfied by this
production quantity.

For each family j, free the production capacity corresponding to
producing more than min [N(j); M(j)] periods of demand.

1

Let CAP denote the sum of the production capacities freed by each
family independently of the product type it belongs to.

Allocate the capacity CAP to the family(ies) in quantities equal
to full periods of demand, whenever possible, in such a way to
"minimize the total production costs".

A

If the aggregate problem (P) did not use all regular hours of
production in the present period, treat this extra capacity as
free capacity and allocate it to some family(ies) as long as it
has a positive impact on the total costs.

Pigure 4.2: Routine to Adapt the RKM for the Case of High Setup Costs




-21-

ing changes to be incorporated in the aggregate schedule in order to save
setup costs. These changes will invariably represent tradeoffs between
the linear costs identified in the aggregate production level and the setup
costs incurred at the family level.

The routine briefly described in Figure 4.2 works as follows. Ini-zially
the family subproblems (Pi) are solved and the production quantities le
for each family are obtained. The integer number cf periods of demand, 'or
each family j, that can be satisfied by le is computed and denoted by N:j).
Next, Silver-Meal's lot sizing method [24] is applied, for each family ;.
considering the stream of demands starting with the present period. The
otuput of the method is denoted by L(j) and we refer to it as the ideal
quantity to be produced for family j in the present period. We have chosen
Silver-Meal's procedure instead of the Wagner-Whitin [26] algorithm because
the first is much more efficient computationally and gives satisfactory
results (see [22] for a comparison of the two methods). The next step is
to compute the integer number M(j) of periods of demand that can be totally
satisfied by L(j). It is important to note that N(j), L(j), and M(j) are
computed considering effective family demands. For each family, the differ-
ence between the capacity allocated by the family subproblems and the
capacity needed to cover the demand for more than minimum [M(j),N(j)] periods
is considered freed. The sum of the freed capacities of each family,
independently of the product type to which it belongs, is denoted by Z.
After removing the free capacity from each family, we denote the remaining
production quantity by Q(j). All families are ordered according to
"{ncreasing marginal costs", MC(j) = - 6%?7 g%;% - Ei%;il], where sj is
the setup cost for family j, dj is the demand of family j over the myopic

planning horizon (as defined in section 4.1), and hi is the cost of holding

one unit in stock for one period. The capacity Z is then allocated to the
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families in quantities equal to full periods of demand (whenever possible,

-9 W e 200 ¢ oo v -

starting with the one with minimum MC(j)). After ;ilocati;g one period of
demand to a family j, its marginal cost is recomputed witis Q(j) increased
by the corresponding amount. If after allocating the capacity Z there
exists at least one family with negative marginal cost, and there are
regular hours of production available, that the aggregate problem (P) did
not use for the present period, the routine allocates the time available

to those families. We would like to point out that variants of the marginal
criterion, MC(j), have been tested and none performed better than the one
reported here. This approach effectively alters the aggregate schedule as
lony; as the expected savings in setup costs more than compensate for

changes in the costs considered by the aggregate schedule.

< P W e g T ———— —————mem - - —
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5. COMPUTATIONAL RESULTS

A series of experiments were conducted to examine the performance of
the modifications introduced in the hierarchical knapsack method and to
compare this method with others. The data used for these tests was taken
from a manufacturer of rubber tires. The product structure characteristics,
together with relevant information, are given in Figure 5.1. The twelve
items were partitioned into two product types Pl and P2. Product type Pl
is composed by two families P1Fl and P2F2. The second product type is
partitioned into three families P2F1, P2F2, and P2F3. Table 5.1 exhibits
the demand pattern for both product types.

The experiments were divided in two sets. In the first set, they
consisted of applying the production planning methods to a full year of
simulated plant operations. Production decisions were made every four weels,
The model was then updated using a one year planning horizon. The process
was repeated thirteen times. At the end of the simulation, total setup costs,
inventory holding costs, overtime costs, and backorders were calculated.
Direct manufacturing costs and regular work force costs were omitted because
they were considered fixed costs for this applications.

The methods compared are:

1) The RKM modified by considering the myopic horizon for the demand at
the family level (subsection 4.1) and the "look ahead feasibility
rule" (subsection 4.2). 1In Table 5.2 this method corresponds to
the column K12.

2) The RKM with the three modifications, i.e., the modifications considered
in 1) above, plus the adjustment routine for high setup costs
(subsection 4.3). In Table 5.2 this method corresponds to the
column K123,

3) EROT which consists in disaggregating the product type production quanti-
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Pl ”””"i2~\\-\~
/PlFl P2F2 P2F1\ liZFZ\ li2 F3\
I1 12 13 I1 12 Il 12 I1 12 I1 12

Family setup cost = 90

Holding cost = $.31/unit a wonth
Overtime cost = $9.5/hour
Productivity factor = .1 hr/unit
Production lead time = 1 month

Family setup cosé = $§120
Holding cost = $.40/unit a month
Overtime cost = $9.5/hour
Productivity factor = .2 hrs/unit

Production lead time = 1 month

Regular Workforce Costs and Unit Production Costs are considered fixed costs.

Total Regular Worforce = 2000 hrs/month
Total Overtime Workforce = 1200 hra/month

Figure 5.1: Product Structure and Relevant Information
Table 5.1: Demand Patterns of Product Types
Time Period Product Type 1 Product Type 2
t Pl P2
1 12,736 6,174
2 7,813 2,855
3 0 4,023
4 0 4,860
5 0 7,131
6 0 9,665
7 1,545 17,603
8 7,895 14,276
9 10,982 11,706
10 15,782 15,056
11 16,870 8,232
12 15,870 7,880
13 9,878 10,762
TOTAL 99,371 120,223
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ties directly into item quantities using as a criterion the
equalization of the run out times, f.e., the production quantity
of each product type is allocated among the items in such a way
that they last for an equal number of periods (assuming perfect
forecast). In Table 5.2 this method corresponds to the column
EROT.

Seventy two experiments were performed. The base case corresponds to
the data taken from the manufacturer of rubber tires. The data for the
other seventy one experiments was constructed by perturbing the data of the
base case in order to explore the effects of the production capacity,
magnitude, and relative values of the setup costs and forecast errors.
Global statistics will be provided for the seventy two experiments. Due
to space limitations, we report in Table 5.2 the results of seventeen
problems solved. This subset is representative of the results obtained
throughout the seventy two experiments performed in so far as identifying
meaningful combinations of available capacities, forecast errors, and
setup costs. For the purpose of comparison, we have also solved the seven-
teen problems by the RKM. The corresponding results are shown in column
RKM in Table 5.2. The data structure used in the computational experiments

is given below.

Capacity (3 cases)
Cl: 2000 hrs/month regular time

C2 : 2500 hrs/month regular time
C3 : 1600 hrs/month regular time

Overtime 18 602 of the regular hours in all three cases.

T W T e e e a e e mars — _—
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Forecast Errors (3 cases)
Fl : zero forecast error
F2 : .02 + .Oltl'3 with no bias
F3 : .02 + .011:]"3 all positive forecast errors
where t denotes the period in the planning horizon of the
aggregate problem. F2 and F3 assume that the forecast error
increases in absolute value as t increases. That 1s, the
further away a period is, the higher the average absolute
value of the forecast error is. For F2, the probabilities of
positive and negative forecast errors were assumed to be
equal to .5.
Setup Costs (8 cases)
Product Product
type 1 type 2
Family 1 90 110
S1 Family 2 90 110
Family 3 - 110
Family 1 900 1100
S2 Family 2 900 1100
. Family 3 - 1100
Family 1 900 110
S3 Family 2 1800 110
Family 3 - 110
Family 1 500 1000
sS4 Family 2 2000 100
Family 3 - 50
Family 1 5000 400
S5 Family 2 50 400
Family 3 - 1000
Family 1 3000 110
S6 Family 2 4000 110
Family 3 - 110
Family 1 6000 400
S7 Family 2 4500 5000
\ Family 3 - 3000
Family 1 300 300
S8 Family 2 90 100
Family 3 - 400

4
4

TTT ey T v e e — . e = ¥ S o < e




B L T

.27~

The notation used in Table 5.2 1ig as follows: CiFjSk indicates that
the capacity data used is Ci, the forecast error structure if Fj, and the
setup cost structure is Sk. C1F1S1 corresponds to the base case.

Some conclusions that can be drawn from the computational experiments
are:

1) Independent of capacity limitations and forecast errors, under low setup
costs, K123 does not perform as effectively as K12, However, as
expected, under high setup costs the routine is effective and
should be used.

2) Although the backorders observed are not significant in the experiments
performed, they are always lower in K12 and K123 than in the ERCT
method. In all cases with tight capacity and forecast error
(either biased or unbiased) the EROT procedure carried backorders.

3) All three methods react as expected to high forecast errors and capacity
constraints.

4) The cases in which the EROT procedure performed better than the other two
methods were characterized by extremely low setup costs. Lowever,
the improvement over K12 is not significant even in those few c-ses.

5) In thirteen out of the seventeen cases, K12 outperformed RKM in terms of
total cost. In the four cases where the reverse occurs, the
regular hierarchical knapsack method presents a significant number
of backorders. '

6) It is interesting to observe that except in one case with significant
forecast error (C3F287), the sum of holding and overtime costs are
smaller for the EROT than for other methods. This fact is a
direct consequence of Theorem 3.2.

To test if the observed differences in the total costs obtained with

the four methods are statistically significant, we performed Wilcoxin's

TE W TR T S e S w st Mg e . —
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Table 5.2: A Comparison of the Costs Resulting When the Various Approaches
Were Tested on Sample Points
* BEST M.I.P.
CASE | COST TYPE RKM K12 K123 EROT SOLITION FOUND
Base Holding 29920 30651 45476 29923
Case Setup 5580 5360 5030 5910
8

C1F1S1 Overtime 81684 1113 72319 81681

Total 117184 117120 122825 117514 115616

Setup/Total 4.8% 4.6% 4,17 5.0%

Z Difference in

Cost from M.I.P. 1.4 1.3 6.2 1.6

Backorders - - - -
C1F1S8 Holding 31221 33195 30739 29923

Setup 11910 12610 12210 13910

Overtime 82382 79302 81682 81682

Total 125513 125107 124631 125515 122790

Setup/Total 9.5% 10.1% 9.8% 11.17%

% Difference in

Cost from M.I.P. 2.2 1.9 1.5 2.2

Backorders 71 units - - -
C1F1S5 Holding 31922 32028 35921 29923

Setup 67050 67050 54650 68850

Overtime 81682 80926 79714 81681

Total 180654 180004 170285 180454 165550

Setup/Total 37.1% 37.2% 32.1% 38.2%

% Difference in

Cost from M.I.P. 9.1 8.7 2.9 9.0

Backorders 4 units - - -
C2F1S5 Holding 13582 14042 47784 13584

Setup 67850 67050 53850 68850

Overtime 48577 48878 24681 47578

Total 13001n 129970 126315 130012 124236

Setup/Total 52.2% 51.6% 42, 6% 53.0%

X Difference in 4.9 4.6 1.7 4.6

Cost from M.I.P.

Backorders

> -y, P ———————eey
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CASE COST TYPE* RKM K12 K123 EROT

C1F2S51 Holding 64380 65473 65386 63806
Setup 4740 5070 5030 5730
Overtime 80957 78907 78657 _79709
Total 150077 149450 152073 149245
Setup/Total 3.2 3.4 3.3 3.8
Backorders 5 units - - -

C1F3s1 Holding 83034 86315 94553 78197
Setup 4300 5180 5070 5910
Overtime 88396 83491 80303 90412
Total 175730 174986 179926 174519
Setup/Total 2.5 3.0 2.8 3.4
Backorders - - - -

C1F3s7 Holding 85343 90295 89088 78197
Setup 194000 171300 152200 203700
Overtime 88753 77729 85709 90412
Total 368096 339324 326997 372309
Setup/Total 52.7 50.5 46.5 54.7
Backorders 6 units - - -

C2F151 Holding 13584 13584 21849 13584
Setup 5910 5910 5310 5910
Overtime 48878 47578 42237 47578
Total 68371 67072 68396 67072
Setup/Total 8.6 8.8 7.8 8.8
Backorders - - - -

C2F1S87 Holding 13583 14066 59739 13584
Setup 200500 195300 134100 203700
Overtime 48878 48878 28047 47578
Total 262961 258244 221881 264862
Setup/Total 76.2 75.6 60.4 76,09
Backorders - - - -

AT e —r-
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CASE cosT TYPE" RKM K12 K123 EROT
C2F2S1 Holding 49856 49856 53721 49856
Setup 5730 5730 5400 5910
Overtime 50269 48523 47503 48523
Total 105855 104109 106624 104289
Setup/Total 5.4 5.5 5.1 5.7
Backorders - - - -
C3F1S1 Holding 73016 76157 82455 77584
Setup 3930 4480 4480 5910
Overtime 118560 117326 111320 112560
Total 195506 197963 198255 196054
Setup/Total 2.0 2.3 2.3 3.n
Backorders 5522 units - - -
C3F1S7 Holding 71584 92752 92678 77584
Setup 198500 192700 172100 203700
Overtime 118560 98960 99830 112560
Total 388645 384412 364608 393844
Setup/Total 51.1 50.1 47.2 51.7
Backorders 6942 units - - -
C3F281 Holding 84620 100304 106213 80986
Setup 4300 4920 4810 5910
Overtime 118560 92930 88600 108243
Total 207480 198154 199623 195139
Setup/Total 2.1 2.5 2.4 3.0
Backorders 8159 units 301 units 301 units 1412 units
C3F2s7 Holding 84842 97526 108409 82986
Setup 202900 195300 178700 203700
Overtime 118560 91634 91450 108243
Total 406302 384460 378559 392929
Setup/Total 49.9 50.8 47.2 51.8
Backorders 6178 units - - -
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CASE COST TYPE" RKM K12 K123 EROT
C3F3S1 Holding 87030 120364 117426 86926
Setup 4300 4920 4920 5910
Overtime 118560 87192 90257 118531
Total 209900 212476 212603 211367
Setup/Total 2.1 2.3 2.3 2.8
Backorders 10302 units - - -
C3F3S7 Holding 86570 120349 145205 86926
Setup 190600 188800 174700 203700
Overtime 118559 92219 74385 118531
Total 395729 400368 394290 409157
Setup/Total 48.2 47.2 44.3 49.°
Backorders 10158 units - - -
C3F1S5 Holding 71584 90084 90826 77584
Setup 60050 50450 54650 68850
Over time 118559 104864 100560 112560
Total 250193 255398 246038 258994
Setup/Total 24,0 19.8 22.2 26.5
Backorders 6942 units - - -
&
CODE: Holding Cost - dollars
Setup Cost - dollars
Overtime Cost - dollars
Total Cost - dollars
Setup/Total - percentage
Backorders - units
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signed rank test. The test was used to pairwise compare the methods. The
null hypothesis is that the total costs of the first approach are less than
or equal to those of the second. Table 5.3 shows the results obtained

for the Wilcoxon's test. WI is the Wilcoxon statistics and ¢ is its standard

deviation.

Table 5.3: Results Obtained for the Wilcoxon's Test

Confidence with
which null hypo-
thesis can be

Mothods Compared Wilcoxon Statistics Sample Size rejected
RKM vs. K12 WI = 1.81c 17 967"
RKM vs. K123 Wl = 1.900 17 97%
K12 vs. K123 WI = 5.360 72 >99%
EROT vs. K123 WI = 5.53 72 >o9¥

The Wilcoxon statistics indicate that overall, the adjusted kr=zrsach with
feedback is superior to all other approaches. However, our detailed analvsis
suggests that if the setup costs are very small, i.e., less than 1N7 of the
total cost, the feedback algorithm should not be used.

The second set of experiments consisted in solving a selected sample of
the seventy two problems as mixed integer programming problems (MIP). The
formulation of the production planning problems as MIP's can be seen as an
optimal representation. The four problems shown in Table 5.4 were solved
using the Land and Powell package on the computer Prime 400 at M.I,T.
Unfortunately, although each problem contains only sixty five zero-one
variables, no "true optimal" solution was found within forty hours of connect
time for each of the four problems. In Table 5.4 we indicate the best solu-
tion available at time of interruption of the computer programs. Due to the

poor performence of the mixed integer package we limited the experiments to
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only four problems which were solved just once (rather than on a rolling
horizon basis). This last fact favors the MIP formulations. To facilitate
the comparison between the methods, the results corresponding to the four
problems obtained in Table 5.2 for the RKM, K12, K123, and EROT algorithms are
repeated in Table 5.4.
Table 5.4: Total Costs
C1F1S1 C1F1S5 C1F1S8 C2F1S5
RKM 117184 180654 125513 130010
K12 117120 180004 125107 129970
K123 172825 170285 124631 126315
EROT 117514 180454 125515 130012
Best MIP
Solution 115616 165550 122790 124236
The results in Table 5.4 indicate that when the setup costs are less
than 5% of total costs and K12 1is used, or when the setup costs are preater
than 52 and K123 is used, the total annual costs were never more than 37%
greater than the best MIP solution found after forty hours of connect time.
Finally we point out that none of the Seventy two problems solved by the
RKM, K12, K123, and EROT algorithms on a rolling horizon basis, i.e.
solved thirteen times over the horizon of one year, exceeded ten minutes of
connect time on the M.I.T. computer Prime 400.
‘,
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6. CONCLUSIONS

The experimentation reported herein tends to confirm our belief that
hierarchical planning systems provide a very effective alternative for
supporting production planning decisions at a tactical and operational
level. When contrasted with a mixed integer programming formulation, hier-
archical planning methods produce near optimal solutions with significantly
smaller computational efforts and data collection requirements. The
hierarchical planning approach represents a feasible alternative for the
solution of large scale real life problems which will be unthinkable to
tackle with an M.I.P, based model. Moreover, and most importanc from a
pragmatic point of view, the hierarchical approach parallels the hierarchy of
production planning decisions within the firm.

From a methodological point of view, our experiments seem to indicate
that the modifications introduced to the Regular Knapsack Method clearly
improve the performance of previous algorithms. The K123 method, under the
wide variety of situations tested, outperforms statistically all other
methodological alternatives considered. However, a closer examination of
those cases where setup costs account for less than ten percent of the total
production cost indicates that K12 or EROT might be preferred over K123.

EROT and K12 tend to perform quite closely under low setup cost conditioms.
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APPENDIX 1: PROOF OF THEOREM 3.1
Theorem 3.1: Let uy and u,y be two generic feasible disaggregation proce-
dures such that
t vy t u,
X Bip 2 b ik i=1,2,...,1I; t=1,2,...,T. (3.1)
k=1 k=1
u u,
Then 2 Lz
U Y2 Y2 W )
Proof: Let (X °,I “,R “,0 ) be a feasible solution of (P “'. Hence,
u u u u u u u u t u t u
1 _ 2 1 _ 2 1 _ 2 1 2 - 1_ < 2
Xie =¥ Ry =R » 0 =0 and I, =1, 0% " By = By
k=1 k=1
"1
i=1,2,...,I; t=1,2,...,T is feasible in (P 7). Moreover the objective function
u
value of (P 1) for this feasible solution is:
u I T u u T u u I T-1 T u
1 1 1 1 1 1
z o I, X, +h I.)+ I (r R "+007)+ L L h, roor =
i=1 t=1 it it it it t=1 tt tt i=1 t=1 it k=t+1 ik
I T T
- 1 T (citx:zmux:i) + T (rtR:2+ot0:2) +
i=1 t=1 t=1
1 T t u1 t u2 I T-1 T ul
Y Ih (Zog,, - Lg )+ L Ih L g =
1=1 t=1 1€ =1 1K pap B0 g pmd BE pmean K
1 T u, u, T uy u, I T-1 T u,
= I If(e, X, +h, I,)Y+ZL (rR "+00°)+ L Zh L g, -
1=1 t=1 it71ie it i t=1 tt tt {=1 t=1 it K=t+1 ik
I T-1 T u, I T tou, I T t uy
I I h LI g, - ¥ Ln I g + ¥ T h Leg,. +
1=1 t=1 1t pmer1 K gap pm1 1€ kw1 K ga) pmy 1fpmy 1K
I T-1 T uy
I Lh I g =
1=1 =1 1t =gty 1K
I T u, u, T u, u, I T-1 T u2
= L I (e, X +h, I+ Z(cR"+0,0°)+ I Inh I g
4=1 t=1 it71ite it"it =1 tt t't (=] t=1 it k=t+1 1l {
(Al.1) :
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T uy T u,
The last inequality in (3.2) follows fromthe fact that L g "= I g 7 =1
k=1 ik k=1 ik io
i=1,2,...,I. The conclusion that can be drawn from (Al.1) is that the
u
optimal value of problem (P 1) is not higher than the value of the objec-
u u
tive function of problem (P 2) for any feasible solution in (P 2) that is,
Uy u,
2 Lz .

Theorem 3.1 indicates that any two feasible disaggregation procedures
are not necessarily comparable in terms of total aggregate production costs.
It is important to note however that the optimal value 2" of (Pu) used to
compare disaggregation schemes is a proxy for the total production cost of

the hierarchical method.
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APPENDIX 2: PROOF OF THEOREM 3.2

Theorem 3.2: Let ug denote the EROT disaggregation procedure. Then, if
all disaggregations are made with the EROT disaggregation method, if

Iio 2 0 for all product types, and if the aggregate product type >roblenm
(Po) 1s feasible it follows that

o E
z = 2z
b
Proof: Every summation I with b < a is defined as being zero. L=zt ug
t=a

denote the EROT disaggregation procedure and assume that all disaggregations

are made using this method. Let Iio 2 0, i=1,2,...,I, be the init# 1 fpvon-

tory of product type i before the computations of the effective demand-.

Recall that safety stocks are not included in the I o for 1i=1,2,...,7.

i
Denote by 51: the real demand of product type i in time period t for

i=1,2,...,I and t=1,2,...,T. Since the EROT disaggregation procedure is heing

used each inventory I,, will last for R(i) periods where

r(i) _
I, - I d
io it
R() = r(1) + —22L

diry+1

i=1,2,...,1 (22.1)

r(1) is the smallest nonnegative integer satisfying

r(i)+1 _
I, - z d < 0 .
1o t=1 it
“E
Moreover, the product type problem (P ~) that we need to solve at the begin-
u
ning of period 1 is such that the gif are nonnegative and satisfy for each
T u
1=1,2,...,T the condition I, = I gif. The first term in (A2.1) is the
t=1

smallest integer less than or equal to R(1).
The EROT disaggregation method implies that for each product tyre

i=1,2,...,1 one of two following cases occur:
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up
a) If r(i) > 1 then Bi¢ = dit’ t=1,2,...,r(1), and (A2.2)
r(i) _ up -~
- 3 <
0207 I Yk T Brpm S

e+
u
If r(i) < 1 then I

(47.3)
i
1o = 81 <411

b)

(A2.4)
fo] o 0 O 0O

Assume that (P ) is feasible and that (X ,I ,R ,0 ) is one of its optimal
solutions. Define

u
= X RE-RO E

t
,0%=0

o t t u
I X, - rd, + I
k=1 ik k=1 ik -

u
o E .
and Iit

t=1,2,...,T; 1=1,2,...,1. (A2.5)
Up up up up u

To show that (X °,I ~,R *,0 *) is feasible in (P Ey we still need to prove

that it satisfies the mass balance constraints and that I

u

Es oo,

u

First we prove that the mass balance constraints hold at (X

u u
E,I E,R E,O E).
E Y e-1 t-1_ t—luE o t t t ug

+X, -1 = X0 - 13, +fgo+X,. ~-LX,+53d,. -TZIg
1t-1" "4t it AP e e LIt D | R
= 3, - g i=1,2 I; t=1,2 T (A2.6)
1e Byt 225000513 225004,T. (A2 .

§ the first equality in (A2.6) follows from (A2.5).
Next, we prove that IuE 2 0. Note that
up t
1) forl1<t<r(), I, = I X% >0, i=1,2,...,I by (A2.2)

= = it ik =
k=1
2) for t = r(i)+1
u r(i)+1 r{i)+1 r(i)+1 Y
1,E - r x%- 1 4.+ I -
ir(1)+1 k=1 ik k=1 1k

r(i)+1 o r(1)+1 _ °
= ¢ x2- ¢ 4, +1I, =1 2 0 1=1,2,...,I
1 3T 0 YT o 1r(1)+1

the second equality follows from (A2.2), (A2.3), and (A2.4) since they




YR

..39._
r(i)+1 Uy
imply that Iio = E gik;
k=1
3) for t > r(i)+1,
u t t t u t t
E o E (] =<
1 = T X, -12d Ig = I X, - Id, 6 +1 =
it k=1 ik k=1 ik k=1 ik =1 ik k=1 ik io
o
=1, 2 0. i=1,2,..,1;
the second equality follows from (A2.2), (A2.3), and (A2.4) since thev
r(i)+1l u U
= = = +2,...,T.
imply that I10 kzl R and hence Bik 0, k=r(i)+2, ,T
Up Up up up up
From 1), 2), and 3) we have that (X ,I ,R ~,0 °) is feasible in (P %),
Therefore,
u 1 T u u T u u I T-1 T u
E E E E E E
z < I (e, X, +h, I,)+ T (rR_ +00 Y + L Zh L ¢
i=1 t=1 itit it it e=1 tt tt 1=1 t=1 it K=t+1 ik
I T o t ot t
= L EIfc, X +h, (IX, - ZId,, +Ig>=)]+
1=1 =1 it"it it k=1 ik -1 ik k=1 ik
T u u I T-1 T u
+ I (rthE+°cotE) + I I hit z gii =
t=1 i=1 t=1 k=t+1
I T o £ .t T o o
= I Ife X, ,+h, (I X - Ld,,+1 )]+ I (r.R%+00°% +
1=1 t=1 itTit it k=1 ik k=1 ik io t=1 tt tt
I T-1 T uE I T t UE':
+ I Inh I g--1 Lh (I, - Tgy) =
i=1 t=1 it k=t+1 ik 1=1 t=1 it io k=1 ik
I T ° o T o

r oz (citx1t+hitlit) + I (rth+ot0t) z

i=1 t=1 t=1

uE [}
hence, z 2 oz,
u u

However, from corollary 3.1, 2° Lz E. Consequently 2% = 2 E.
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